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A lubrication theory has been developed for the electro-osmotic flow of non-uniform
buffers in narrow rectilinear channels. The analysis applies to systems in which the
transverse dimensions of the channel are large compared with the Debye screening
length of the electrolyte. In contrast with related theories of electrokinetic lubrication,
here the streamwise variations of the velocity field stem from, and are nonlinearly
coupled to, spatiotemporal variations in the electrolyte composition. Spatially non-
uniform buffers are commonly employed in electrophoretic separation and transport
schemes, including iso-electric focusing (IEF), isotachophoresis (ITP), field-amplified
sample stacking (FASS), and high-ionic-strength electro-osmotic pumping. The fluid
dynamics of these systems is controlled by a complex nonlinear coupling to the
ion transport, driven by an applied electric field. Electrical conductivity gradients,
attendent to the buffer non-uniformities, result in a variable electro-osmotic slip
velocity and, in electric fields approaching 1 kV cm−1, Maxwell stresses drive the
electrohydrodynamic circulation. Explicit semi-analytic expressions are derived for
the fluid velocity, stream function, and electric field. The resulting approximations
are found to be in good agreement with full numerical solutions for a prototype
buffer, over a range of conditions typical of microfluidic systems. The approximations
greatly simplify the computational analysis, reduce computation times by a factor
4–5, and, for the first time, provide general insight on the dominant fluid physics of
two-dimensional electrically driven transport.

1. Introduction
Microfluidic technology involves the manipulation of fluids on submillimetre length

scales. One of the most promising applications of microfluidics is the ‘lab-on-a-
chip’ device, which is expected to revolutionize analytical chemistry much as the
integrated circuit revolutionized the microelectronics industry (Mitchell 2001; Stone,
Stroock & Ajdari 2004). With this rapidly emerging technology, the physical and
chemical processes required of a chemical analysis are miniaturized, multiplexed, and
integrated onto a microchip. A fundamental challenge in developing microfluidic
systems is the precise control of fluid motion through networks of microchannels.
Flows in these networks are typically on the order of nanolitres per second, and many
microfluidic processes require flow control to picolitres-per-second accuracy (Bousse
et al. 2000). While microscale mechanical pumps have failed in this to date, a pumping
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mechanism that has been demonstrated to be capable of this is electro-osmosis (Bousse
et al. 2000), which arises naturally when an electric potential gradient is imposed
along a narrow electrolyte-filled channel. Electro-osmotic fluid motion is produced
by electrical stresses in the diffuse charge layer near a charged interface; the applied
electric field imparts motion to the ions, which transfer momentum to the bulk fluid
through molecular interactions. It is thus a natural choice for microfluidic systems,
which typically require applied potential gradients for electrophoretic separations.

Theories of electrokinetic motion began with the work of von Helmholtz (1879) and
von Smoluchowski (1903), who developed formulae relating the electrophoretic and
electro-osmotic velocities to the surface potential and applied electric field in the thin
double-layer and low-zeta-potential limit. More general theories have followed (Russel,
Saville & Schowalter 1989; Ghosal 2004), but until recently most of the effort has been
focused on linear theory. Analytical solutions have elucidated much of the underlying
physics and chemistry of electrophoresis and electro-osmosis but have limited utility
in predicting the behaviour of inherently nonlinear microfluidic processes.

A general set of nonlinear balance laws for electrophoretic separations was first
introduced by Bier et al. (1983) in the early 1980s. The Bier group later developed
a one-dimensional simulation of the classical modes of electrophoretic separation
(Saville & Palusinski 1986; Palusinski et al. 1986; Mosher, Saville & Thormann 1992),
and since then many researchers have used similar one-dimensional simulations to
advance our understanding of the dynamics of electrophoresis (e.g. Kasicka 1997;
Gebauer & Bocek 2002). Strictly one-dimensional models make it difficult to account
for effects, such as solute dispersion, that are associated with non-uniform electro-
osmosis and common to electrically driven separations. Sounart & Baygents (2001)
thus extended the Bier et al. model to two dimensions and incorporated non-uniform
electro-osmosis to examine nonlinearly coupled solute dispersion and fluid motion in
microfluidic channels. These unsteady simulations of electrokinetic motion in multiple
dimensions are computationally intensive – at electric field strengths of hundreds to
thousands of V cm−1, sharp gradients in the field variables form locally and fine meshes
and/or flux-limiter techniques (Sweby 1984) are required for convergence. Moreover,
two elliptic PDEs (one for the fluid velocity u and one for the electric potential φ)
and a system of nonlinear algebraic equations and parabolic PDEs (for the solutal
concentrations) must be solved simultaneously at each point in a three-dimensional
(or four-dimentional) spatiotemporal computational domain. The application of flux-
corrected transport (FCT) to the electrophoresis model has permitted the simulation
of some processes (Sounart & Baygents 2000, 2001), but many more complicated
systems remain intractable. Adaptive non-uniform grids may improve computational
efficiency enough to conquer these systems, but many challenges to the development
of such algorithms for electrophoresis simulations exist.

An alternative approach to computational development is to implement approxima-
tions in a problem formulation that simplifies the calculation without excising the
essential physics and chemistry. Bharadwaj & Santiago (2005) used cross-sectional
averaging to develop one-dimensional macrotransport approximations of coupled
electrokinetic and electro-osmotic motion for dilute analytes stacking in a binary
electrolyte with an axial conductivity gradient. They applied this model to investigate
the dynamics of the stacking boundary in field-amplified sample stacking (FASS).
Their parametric studies reveal optimum operating conditions, and the model results
are shown to compare qualitatively well with the experimental data.

Here we present a lubrication theory for two-dimensional electro-osmosis and
electrohydrodynamics in a microchannel, emphasizing the motion that results from
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Figure 1. Definition sketch for two-dimensional electro-osmotic flow in a non-uniform
electrolyte. A rectangular channel of infinite extent perpendicular to the (x, y)-plane is filled
with a spatiotemporally variable electrolyte and subjected to an applied electric field in the
x-direction. The characteristic length b(t) for axial conductivity variations is time dependent
owing to dispersion, and the approximate solutions apply when (h/b)2 � 1, (h/b)3Pe � 1,
(h/b)Re � 1. Because of the high aspect ratio, the diagram is not to scale; in particular the
width of the channel is exaggerated.

streamwise gradients in the electrical conductivity of the fluid. Consider a long channel
formed by parallel surfaces separated by a distance 2h, as shown in figure 1; the
channel is filled with an electrolyte of non-uniform composition and, as a consequence,
the electrical conductivity σ varies axially over a characteristic length b. For electro-
osmotic flow in a microchannel, the fluid velocity u and electric field E ≡ −∇φ are
coupled to σ , so b is also the axial length scale for variations in u and E. Solute-
dispersion mechanisms dictate that b is, in many cases, large relative to h (Thormann
et al. 1998; Mosher et al. 1992; Burgi & Chien 1991). Also, on microfluidic length
scales, u and E are often quasi-steady, viz. the fluid motion and electric field adjust to
changing ion distributions on time scales that are small relative to the time scales for
ion transport. In such instances, if the Peclet number Pe is not too large, specifically if
(h/b)3Pe � 1, the classical lubrication approximation (h/b)2 � 1 simplifies the problem
formulation, and explicit semi-analytic expressions for u and E are obtained in terms
of the ion distributions at any given time. The expressions are semi-analytic because
the balance laws governing the ion distributions are nonlinear and must be solved
numerically.

A few other researchers have used lubrication theory in the context of
electro-osmotic flow. Ajdari (1996) and Long, Stone & Ajdari (1999) considered the
lubrication-approximation limit in treatments of electro-osmotic flow between parallel
plates with surface undulations and/or charge variations. Ghosal (2002) presented a
lubrication theory for electro-osmotic flow in a microchannel of arbitrary shape and
slowly varying cross-section and wall charge. This was later coupled with a model for
wall adsorption in capillary-zone electrophoresis (Ghosal 2003). The theory presented
here differs markedly from those works because the two-dimensional fluid motion
stems from non-uniformities in the electrolyte rather than from the surface properties
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or channel geometry. Consequently, u and E are coupled to the two-dimensional
nonlinear ion transport, and the characteristic scales in the problem are dictated
in part by the electrolyte properties. Electrohydrodynamic stresses, two-dimensional
conductivity fields, protonation–deprotonation reactions, and diffusion currents
acting within the fluid volume must also be considered, and u and E evolve in time.

The approximations for u and E are evaluated by comparison with simulations
of a prototype non-uniform-electrolyte configuration (Sounart & Baygents 2001) and
are shown to produce accurate representations of the two-dimensional fluid motion,
ion transport, and electric field. In some cases, an approximation error is introduced
into a narrow region within a conductivity zone boundary during an initial transient.
The error is highly localized, diminishes rapidly, and does not significantly affect
the solution at later times. For all configurations examined, the average fluid-speed
approximation error in the conductivity transition zones is less than 1 % at all times
and is less than 0.2 % after two characteristic times for convection across the sample
zone.

Although numerical simulation is still required to calculate the unsteady ion distri-
butions, the computational expense devoted to calculating u and E, about 80 % of
the total simulation time, is essentially eliminated. The approximations may also lay
the foundation for additional approximations that might reduce simulation times
further, and permit simulation of more complicated electrolyte systems. For example,
a similar approximation to that developed here for u and E, may be possible for the
pH value, the calculation of which consumes most remaining simulation time. This
would reduce two-dimensional simulation times by more than an order of magnitude
over that required to solve the full problem and would provide details of the fluid
motion and ion transport in electrolyte systems that remain intractable.

The approximate theory presented here also has significance beyond improving
computational efficiency. The scaling of the balance laws and the explicit expressions
obtained for u and E illuminate the dominant physics of electrically driven transport
in microchannels, providing general estimates that are difficult to extract from specific
numerical solutions with the full model. The analysis indicates that applied electric
fields in straight microchannels are essentially unidirectional, even when the transverse
component of the conductivity gradient exceeds the axial component. The approxima-
tions show that the transverse component Ey of E, though orders of magnitude
smaller than the axial component Ex , can nevertheless have a significant effect on the
fluid motion. With the lubrication approximation, Ex is calculated to leading order
as for a one-dimensional field, using cross-sectionally averaged variables, and Ey is
approximated as a function of the transverse diffusion current and of an integral of
the conductivity field. The analysis also demonstrates that, where electrical stresses
are negligible, the local axial component of the fluid velocity is typically parabolic. At
sufficiently high values of E, however, the components of u are described by terms
analogous to a classical lubrication approximation plus additional electrohydro-
dynamic terms that involve integrals of the electric field. Simulation results demon-
strate that bulk electrical stresses alter the structure of the flow in conductivity zone
boundaries, producing complicated circulations heretofore unseen.

The presentation in this paper begins with a summary of the balance laws in § 2
and a general two-dimensional simulation method in § 3. From the scale analysis
in § 4 approximate solutions for E and u are developed in § 5 and § 6, respectively,
and summarized in § 7. In § 8, the approximations are evaluated by comparing the
simulation results to those generated by numerical solutions to the full problem. The
paper is then concluded in § 9 with remarks on the implications of the results.
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2. Problem formulation
A model describing two-dimensional electrically driven fluid motion in a micro-

channel was presented in a previous work (Sounart & Baygents 2001). The model
consists of a coupled set of balance laws and boundary conditions that are appropriate
for electrophoretic separations and related microfluidic processes. The problem
formulation is sufficiently general to permit investigation of such processes for a
broad set of operating conditions. The configuration considered in this work is shown
in figure 1. An electric field is applied with the anode in a buffer reservoir to the left
of the channel and a cathode in a reservoir to the right. Under the action of the field,
the solvent and M solutal components are transported along the axis of the channel,
which is of length Lc. Because the concentrations of the solutes, including the ionic
species of the buffer, vary with position and time, so too do u, E, and σ . The
governing equations that account for these coupled variations are summarized in the
subsections that follow; more complete expositions of the balance laws can be found
elsewhere, e.g. in Saville & Palusinski (1986), Mosher et al. (1992), and Sounart &
Baygents (2001).

Before stating the balance laws, we note that we apply these equations to the bulk
electrolyte, meaning the fluid that is not within the electrical double layers at the
channel walls. To account for electrokinetic motion within the electrical double layers,
we apply an electro-osmotic slip condition on u at y = ±h, as indicated in § 2.2.

2.1. Balance laws

The motion of the aqueous electrolyte is governed by the Stokes equations, augmented
to accommodate electrical stresses, i.e.

0 = −∇p + η∇2u + ε0ε∇φ∇2φ, (2.1)

∇ · u = 0. (2.2)

Here η and ε are the fluid viscosity and relative permittivity, respectively, p is the
pressure, and ε0 is the permittivity of free space. Typical buffer ionic strengths are
1–100 mM and the Debye screening length κ−1 is 1–10 nm. So long as h and b are at
least of the order of microns, the bulk charge density ρe is zero to leading order at
the length scales of interest. The governing equation for the bulk electric potential φ

then follows from considerations of charge conservation (Mosher et al. 1992), viz.

∇ · (σ∇φ − iD) = 0, (2.3)

where −σ∇φ and iD represent the ohmic and diffusive contributions to the electrical
current, respectively. Despite the fact that ρe ∼ 0, spatial variations of φ dictated by
(2.3) can give rise to Maxwell stresses that alter the bulk fluid motion, and this is
accounted for by the last term on the right-hand side of (2.1).

In an ionic conductor, σ can be described in terms of ionic species concentrations,
which evolve due to mass transport and protonation–deprotonation reactions. Because
the reactions are fast relative to mass transport, ion concentrations are constrained
locally by the mass-action equilibrium relations

Kz
k ≡ [H+]nz−1

k

nz
k

,

{
z = −Nk + 1, −Nk + 2, . . . , Pk

k =1, 2, . . . , M,
(2.4)

where Kz
k and nz

k are, respectively, the acidic equilibrium constant and the concentra-
tion of the subspecies of the kth solutal component with valence z; Pk and Nk are,
respectively, the number of cationic and anionic subspecies of the kth component.
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The electroneutrality approximation can then be written as

M∑
k=1

Pk∑
z=−Nk

zkn
z
k + [H+] − Kw

[H+]
= 0, (2.5)

where Kw ≡ [H+][OH−] is the dissociation constant for water.
The effect of fluid motion on the ion concentrations is governed by balance laws for

each ionic species. If the transport mechanisms include convection, electromigration,
and diffusion, we have

∂nz
k

∂t
= ∇ ·

[
ezωkn

z
k∇φ−nz

ku+ωkkBT ∇nz
k

]
+Rz

k,

{
z = −Nk, −Nk + 2, . . . , Pk,

k = 1, 2, . . . , M.
(2.6)

In (2.6) t denotes time, kBT is the Boltzmann temperature, e is the charge on a proton
(1.6 × 10−19 C), ωk is the hydrodynamic mobility, which is approximated as constant
for all species of component k, and Rz

k is the rate of generation of nz
k through mass

action. Conservation laws for the solutal components are derived by summing (2.6)
over the species index z for each component k, which yields

∂Ck

∂t
= −∇ · fk = ∇ · [ez̄kωkCk∇φ − Cku + ωkkBT ∇Ck], k = 1, 2, . . . , M, (2.7)

where fk , Ck , and z̄k are the flux, concentration, and effective valence of component
k; fk is defined implicitly in (2.7), and Ck and z̄k are defined, respectively, as

Ck ≡
Pk∑

z=−Nk

nz
k, k = 1, 2, . . . , M, (2.8)

and

z̄k ≡

Pk∑
z=−Nk

znz
k

Ck

, k = 1, 2, . . . , M. (2.9)

The governing equations are closed by relating σ and iD to the ion concentrations.
By combining (2.5) and (2.6) with solvent ion balances, and comparing with (2.3), it
can be shown that (Mosher et al. 1992)

iD = −ekBT

(
M∑

k=1

ωk∇z̄kCk + ωH∇[H+] − ωOHKw∇[H+]−1

)
(2.10)

and

σ = e2

[
M∑

k=1

z2
kωkCk + ωH[H+] + ωOH

Kw

[H+]

]
, (2.11)

where z2
k is the mean-square valence of the kth component, i.e.

z2
k ≡

+P k∑
z=−Nk

z2nz
k

Ck

, k = 1, 2, . . . , M. (2.12)
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2.2. Initial and boundary conditions

We are concerned with microchannel flow driven by the external application of an
electric field, as is typical for electrokinetically operated microfluidic systems. Buffer
reservoirs at the channel ends x = x0 and x0 + Lc are thus maintained at the same
pressure, so p(x0, y, t) =p(x0 + Lc, y, t) is set to an arbitrary constant (zero). Because
microfluidic channel depths are typically O(10 µm) and κ−1 is typically less than
10 nm, κh � 1. Electrokinetic motion in the diffuse charge layer near the channel
walls is then manifested as an apparent slip condition on the motion of the bulk
electrolyte. Since a zone of non-uniform electrolyte is advected down the channel, we
adopt a moving frame of reference that translates at a speed U (t). Let u(x, y, t) ≡ u · ex

and v(x, y, t) ≡ u · ey , where ex and ey are the unit vectors in the axial and transverse
directions, respectively (figure 1). We require

u(x, ±h, t) ≡ ueo(x, t) = µ(x, t)Ex(x, h, t) − U (t), v(x, ±h, t) = 0, (2.13)

where the local electro-osmotic mobility for the channel wall, µ, is calculated as
a function of ionic strength, pH, and buffer-cation concentration (Thormann et al.
1998); the reference-frame speed U (t) is calculated as (Anderson & Idol 1985)

U (t) =
1

Lc

∫ x0+Lc

x0

µ(x, t)Ex(x, h, t) dx. (2.14)

With this formulation, U (t) is the mean velocity of the channel flow for cases where
the effect of the bulk Maxwell stresses is negligible.

The entrance length is O(h) � Lc for a Stokes flow, so if the uniform buffer at the
column ends is undisturbed by variations in the channel interior, there is unidirectional
flow at x = x0 and x0 + Lc, viz.

u(x0, y, t) = u(x0 + Lc, y, t) = 3
2
[u0 − U (t)]

[(
y

h

)2

− 1

]
+ [u0 − U (t)] (2.15)

and

v(x0, y, t) = v(x0 + Lc, y, t) = 0. (2.16)

In (2.15), u0 = µ0E0, where u0 is the electro-osmotic velocity, µ0 is the electro-osmotic
mobility, and E0 is the magnitude of the electric field, all in the running buffer; u0 is
constant if the electric current in the channel is constant.

The boundary conditions on the electric potential are

σ∇φ · n = iD · n, y = ±h,

φ = 0, x = x0 + Lc,

σ∇φ · n = i0, x = x0 (constant current),

φ = φ0, x = x0 (constant voltage),

⎫⎪⎪⎬
⎪⎪⎭ (2.17)

where φ0 and i0 are, respectively, the (constant) potential or axial current density pre-
scribed at the electrodes and n is the unit normal directed outward from the electrodes
and the electrically insulating channel walls. The concentrations Ck, k = 1, 2, . . . , M ,
are fixed at their running buffer values for x = x0, x0 + Lc. Adjustments in the surface
charge density on the channel wall are considered to contribute negligibly to the
species balances, therefore

fk(x, ±h, t) · n = 0, k = 1, 2, . . . , M. (2.18)
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3. General two-dimensional simulation method
A general procedure has been presented previously for numerically solving in two

dimensions the mathematical model described above (Sounart & Baygents 2001).
Here we summarize and comment on a slight modification to that approach, which
will be used in § 8 for comparison with the approximate solutions.

In most electrophoretic separations and many other microfluidic processes, a sample
zone of non-uniform electrolyte having characteristic length Ls � Lc is carried by the
electro-osmotic flow through a channel filled with a uniform buffer. Thus, to save
computation time, the simulation domain is restricted to a small region, of O(Ls), that
encompasses the non-uniform buffer. This is done simply for computational efficiency
and is not a restriction on the model, since the domain size can be increased as
necessary to encompass any number or size of non-uniform conductivity zones. New
boundaries x = ±Ld are accordingly set back a distance of O(10h) from the sample
zone, where the running buffer remains uniform. The boundary conditions for u, φ,
and Ck, k = 1, 2, . . . , M , at x = x0 and x0 + Lc are applicable at x = ±Ld except in the
case of constant voltage, where

φ(−Ld, y) = φ0

⎛
⎜⎜⎜⎝1 +

2Ld − Lc

σ0

∫ x0+Lc

x0

dx/〈σ 〉

⎞
⎟⎟⎟⎠ (constant voltage). (3.1)

Here 〈σ 〉 is the cross-sectionally averaged conductivity.
The quasi-steady velocity field is calculated in the moving coordinate at any given

time by introducing the stream function and solving the biharmonic equation with a
forcing function resulting from the electrical stresses, viz.

∇4ψ = −ε0ε

η

[
∂φ

∂x

∂(∇2φ)

∂y
− ∂φ

∂y

∂(∇2φ)

∂x

]
, (3.2)

where

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.3)

The boundary conditions on ψ are

ψ(x, ±h, t) = 0, (3.4)

∂ψ

∂y
(x, ±h, t) = ueo(x, t) − U (t), (3.5)

ψ(±Ld, y, t) = 3
2
h[u0 − U (t)]

[
1
3

(
y

h

)3

−
(

y

h

)]
+ [u0 − U (t)]y, (3.6)

∂ψ

∂x
(±Ld, y, t) = 0. (3.7)

Appropriate numerical methods have been chosen to solve each balance law. An
FCT algorithm (Sounart & Baygents 2000) with operator splitting (Gottlieb 1972;
Boris et al. 1993) was used to solve the parabolic PDEs (2.7), and publicly available
subroutines (de Zeeuw 1990; Bjorstad 1983) were incorporated into the main code
to solve the elliptic PDEs (2.3) and (3.2). For simulations with buffer B (see § 8),
the numerical scheme used to solve the component mass balances (2.7) was slightly
modified to increase the computational efficiency. Since diffusion dominates ion
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transport in the transverse direction, the transverse finite-difference equation resulting
from the operator split is solved implicitly; the time derivative is discretized with a
first-order backward-difference approximation, and FCT is not implemented. Since
all numerical results presented in this paper are converged, this does not affect any
of the comparisons.

4. Scale analysis
An axial conductivity transition, or zone boundary, in a microchannel or capillary is

a basic element of most electrophoretic separation processes, e.g. ITP, IEF, and sample
stacking (Mosher et al. 1992; Beckers & Boček 2000), as well as other microfluidic
processes such as high-ionic-strength electro-osmotic pumping (Bousse et al. 2000).
In these protocols, multiple zones of different composition and conductivity are
established along the separation axis. In this section, the system of PDEs that describes
the electrically driven transport processes, (2.1)–(2.3) and (2.7), is scaled for an
arbitrary zone boundary of length b in a rectangular channel of arbitrary electrolyte
composition. The complexity of the following scale analysis results from the many
coupled dependent variables that evolve temporally in two dimensions. Scaling
arguments are presented first for the variables in the charge balance (2.3). This
produces characteristic scales for Ex ≡ E · ex ≡ −∂φ/∂x and Ey ≡ E · ey ≡ −∂φ/∂y,
which are required to scale the electrical stresses in the momentum balance (2.1).
After scaling the Stokes equations (2.1) and (2.2), the characteristic values thus
derived are applied to scale the component mass balances (2.7). With the scaled
balance laws from this section we will derive in the following section the approximate
solutions that are possible for geometries and electrolyte configurations typical of
electrophoretic separations and related microfluidic processes.

4.1. Charge balance

The construction of approximate solutions for u(x, t) and E(x, t) begins with (2.3),
which is written as

∂

∂x
(σEx) +

∂

∂y
(σEy) = −∂iD

∂x
− ∂jD

∂y
, (4.1)

where iD ≡ iD · ex and jD ≡ iD · ey . Characteristic scales for some variables in this
equation are not obvious from the geometry and initial conditions but can be
deduced through physical arguments and simplified expressions.

Diffusion current and conductivity

Characteristic scales for the components of the diffusion current follow from their
definition in (2.10). For components of O(1) valence,

iD ∼ ekBT 
ωc

δCb

δx
, (4.2)

where Cb is the buffer concentration and 
ωc is a characteristic mobility difference
of the buffer ions. 
ωc is O(ωc), where ωc is a characteristic mobility, unless all
buffer ions have mobilities that differ by less than O(ωc); we will keep track of it as

ωc to allow for this special case. By inspection of (2.11), we can relate Cb to σ by
σ ∼ e2ωcCb, which yields

iD ∼ 
ωc

ωc

kBT

e

∣∣∣∣ 1

γ2

− 1

γ1

∣∣∣∣ σ0

b
(4.3)
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for a zone boundary of length b that separates a region of conductivity σ0/γ1 from
one of conductivity σ0/γ2.

Similarly,

jD ∼ 
ωc

ωc

kBT

e

δσ

δy
. (4.4)

The proper scaling for δσ/δy follows from the observation that concentration and
conductivity variations in the transverse direction, even if initially zero, develop from
the fluid motion (Sounart & Baygents 2001). To characterize this, let σ̂ ≡ σ − 〈σ 〉
and Ĉk ≡ Ck − 〈Ck〉, where the angle brackets denote a cross-sectional average. The

perturbations σ̂ and Ĉk are produced by axial convection and limited by transverse
diffusion; for t � h2/(ωkkBT ), Taylor’s approximation (1953) gives

ωkkBT
∂2Ĉk

∂y2
∼ u

∂Ck

∂x
, k = 1, 2, . . . , M. (4.5)

Since the appropriate axial and transverse length scales are b and h, respectively, and
the scales for u and Ck are u0 | γ2 − γ1 | and C0|1/γ2 − 1/γ1|, respectively, to balance
terms in (4.5) we require

Ĉk ∼
(

h

b

)
Pek

∣∣∣∣ 1

γ2

− 1

γ1

∣∣∣∣C0, k = 1, 2, . . . , M, (4.6)

where

Pek ≡ |γ2 − γ1|u0h

ωkkBT
, k = 1, 2, . . . , M. (4.7)

Moreover

σ̂ ∼
(

h

b

)
Pe

∣∣∣∣ 1

γ2

− 1

γ1

∣∣∣∣ σ0, (4.8)

where Pe= Pek for a characteristic buffer component. According to (4.4), the
characteristic value for jD is therefore

jD ∼
(


ωc

ωc

)
kBT

e

∣∣∣∣ 1

γ2

− 1

γ1

∣∣∣∣ σ0

b
Pe ∼ PeiD. (4.9)

Note that the characteristic scales for σ and σ̂ are not, in general, equivalent; rather,

σ̂

σ
∼

(
h

b

)
Pe. (4.10)

Transverse-conductivity variations scale on the Peclet number, which couples the
scaling of the charge balance to the fluid motion and ion transport.

Electric field

We now have characteristic values for all variables in (4.1) except Ex and Ey . The
characteristic value for Ex is simply

Ex ∼ |γ2 − γ1|E0. (4.11)

Because the electric field is applied axially, Ey is initially zero if the initial ion concen-
tration fields are cross-sectionally uniform. Non-zero values of Ey are induced by the
developing transverse conductivity gradients and the attendant transverse diffusion



Lubrication theory for electro-osmotic flow 149

current. Thus σEy ∼ jD , or

Ey ∼
(


ωc

ωc

)
kBT

e

Pe

b
. (4.12)

If the foregoing scale factors are introduced into (4.1), one obtains

∂

∂x∗

[
〈σ ∗〉 E∗

x +

(
h

b

)
Peσ̂ ∗E∗

x

]
+ Γ

[
〈σ ∗〉

∂E∗
y

∂y∗ +

(
h

b

)
Pe

∂

∂y∗ (σ̂ ∗E∗
y)

]
= −Λ

∂i∗
D

∂x∗ − Γ
∂j ∗

D

∂y∗ ,

(4.13)

where

x∗ ≡ x

b
, y∗ ≡ y

h
,

〈σ ∗〉 ≡ 〈σ 〉
|1/γ2 − 1/γ1|σ0

, σ̂ ∗ ≡ σ̂

(h/b)Pe|1/γ2 − 1/γ1|σ0

,

E∗
x ≡ Ex

|γ2 − γ1|E0

, E∗
y ≡ Eyb

(
ωc/ωc) (kBT /e) Pe
,

i∗
D ≡ iDb

(
ωc/ωc) (kBT /e) |1/γ2 − 1/γ1|σ0

,

j ∗
D ≡ jDb

(
ωc/ωc) (kBT /e) |1/γ2 − 1/γ1|σ0Pe
.

In (4.13),

Γ ≡
(


ωc

ωc

)(
µ0

ωce

)
and Λ ≡

(

ωc

ωc

)(
kBT /e

|γ2 − γ1|E0b

)

are dimensionless groups that essentially characterize, respectively, the ratio of the
electro-osmotic and electrophoretic mobilities in the running buffer and the ratio
of the Boltzmann potential and the characteristic potential drop over the length
scale b. The factor 
ωc/ωc is typically O(1) and is included here because we will
also consider the special case 
ωc � ωc. The ratio µ0/(ωce) is also typically O(1)
unless electro-osmosis is suppressed, in which case µ0/(ωce) <O(1). Hence Γ � O(1).
Applied-voltage gradients in excess of 100 V cm−1 are common in microfluidic systems,
so E0b is such that Λ � 1.

Transverse perturbation of Ex

The quasi-static electric field is irrotational, or equivalently

∂Ex

∂y
=

∂Ey

∂x
. (4.14)

Ex is scaled with |γ2 − γ1|E0, which characterizes the change in Ex over the axial
length scale b. But the transverse variations in Ex are small relative to |γ2 −γ1|E0, thus
∂E∗

x/∂y
∗ is not O(1). As was done for the conductivity and component concentrations

in § 4.1, a new dependent variable Êx ≡ Ex − 〈Ex〉 is introduced; Êx changes by O(Êx)
over the transverse length scale h. With this substitution, (4.14) is scaled and balanced,
i.e.

∂Ê∗
x

∂y∗ =
∂E∗

y

∂x∗ (4.15)



150 T. L. Sounart and J. C. Baygents

where Ê∗
x ≡ Êx/ (h/b)2 Γ |γ2 − γ1|E0. Accordingly,

E∗
x = 〈E∗

x〉 +

(
h

b

)2

Γ Ê∗
x . (4.16)

Since typically Γ � O(1), (4.16) implies that E∗
x ≈ 〈E∗

x〉 for (h/b)2 � 1, which is the
same stipulation on the lubrication approximation as that for u(x, t) in the Stokes
equations. Moreover, comparing (4.16) with (4.10) gives the general result that for
Pe � O(1) the transverse perturbation of the electric field is smaller than that of the
conductivity if h/b < 1; specifically,

Êx/Ex

σ̂ /σ
∼

(
h

b

)
Γ

Pe
. (4.17)

Examples of this were obtained previously in numerical simulations (Sounart &
Baygents 2001). Êx/Ex is independent of Pe, because this is an electrically driven
flow, and thus both Êx and Ex scale with Pe.

4.2. Stokes equations

Scaling arguments from the preceding section also help to scale the Stokes equations.
Equation (2.2) reads

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0, (4.18)

where u∗ ≡ u/(|γ2 − γ1|u0) and v∗ ≡ vb/(|γ2 − γ1|u0h). The scale for v is chosen to
satisfy continuity for a two-dimensional flow. Similarly, the momentum balance ((2.1))
becomes (

h

b

)2
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2
+

(
h

b

)
λE∗

x

[
∂E∗

x

∂x∗ + Γ
∂E∗

y

∂y∗

]
=

∂p∗

∂x∗ (4.19)

and (
h

b

)2 [(
h

b

)2
∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

]
+

(
h

b

)3

λΓ E∗
y

[
∂E∗

x

∂x∗ + Γ
∂E∗

y

∂y∗

]
=

∂p∗

∂y∗ , (4.20)

where p∗ ≡ ph2/(η|γ2 − γ1|u0b). λ≡ εε0|γ2 − γ1|E0h/(ηµ0) is the magnitude of the
electrical stress normalized to that of the viscous stress. Because the electro-osmotic
mobility drives the transverse perturbations, in (4.13) and (4.20) the coefficient Γ

accompanies the terms involving E∗
y and j ∗

D . If electro-osmosis is suppressed then
Γ � 1 and the transverse effects vanish.

4.3. Component mass balances

The solutal-component mass balances are scaled by defining

C∗
k ≡ Ck

C0|γ2 − γ1| , t∗ ≡ t |γ2 − γ1|u0

b

and

Ĉ∗
k ≡ Ĉk/ (h/b) Pek

∣∣∣∣ 1

γ2

− 1

γ1

∣∣∣∣C0,
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from which it follows that

∂C∗
k

∂t∗ = −
(

ωke

µ0

)
∂

∂x∗ (z̄kE
∗
xC

∗
k ) −

(

ωc

ωc

)(
ωk

ωc

)
∂

∂y∗ (z̄kE
∗
yC

∗
k ) − u∗ ∂C∗

k

∂x∗

−
(

h

b

)
Pekv

∗ ∂Ĉ∗
k

∂y∗ +

(
h

b

)
1

Pek

∂2C∗
k

∂x∗2
+

∂2Ĉ∗
k

∂y∗2
, k = 1, 2, . . . , M. (4.21)

5. Approximation for E(x, t)
The development of approximate formulae for u and E begins with approximations

for E because these appear in the expressions for u. The electric field is governed by
(4.13), which does not immediately suggest an approximate solution unless Γ � 1, a
condition that is not generally satisfied. However, for most micro-analysis applications
in microchannels and capillaries, the scaling in § 4.1 shows that Ex ≈ 〈Ex〉. When
combined with (4.13), this leads to an approximate solution for Ex . With the simple
expression derived for Ex , Ey can then be deduced from (4.13). Several levels of
approximation for Ey will be presented, each level resulting from an additional
restriction that produces a simpler expression. For the sake of readability, the asterisks
are hereafter dropped from the scaled variables.

5.1. Approximation for Ex when (h/b)2Γ � 1, (h/b)3PeΓ � 1

Applying the divergence theorem to (4.13) and combining the result with (4.16) leads
to (Sounart 2001)

Ex =
i0 − Λ 〈iD〉

〈σ 〉 −
(

h

b

)3

PeΓ

〈
σ̂ Êx

〉
〈σ 〉 +

(
h

b

)2

Γ Êx, (5.1)

where i0 has been scaled with (γ2/γ1 − 1)2(γ1/γ2)σ0E0. For (h/b)2Γ � 1 and
(h/b)3PeΓ � 1, this yields a simple leading-order solution E(0)

x for Ex , viz.

E(0)
x =

i0 − Λ 〈iD〉
〈σ 〉 . (5.2)

If 〈iD〉 and 〈σ 〉 are replaced by iD and σ , (5.2) is equivalent to the explicit expression
obtained for Ex when Ey is identically zero (Mosher et al. 1992). Typically Λ � 1, but
since it is a trivial matter to calculate the average diffusion current, 〈iD〉 is retained
here.

5.2. Approximation for Ey when (h/b)2Γ � 1, (h/b)3PeΓ � 1

Although E is nearly unidirectional for (h/b)2Γ � 1 and (h/b)3PeΓ � 1, the ‘small’ Ey

often has an important effect on ion transport and fluid motion. The scaled component
mass balances, (4.21), suggest that unless 
ωc/ωc � O(1) transverse electromigration
cannot be neglected, and the scaled x-momentum equation (4.19) suggests that, for
(h/b)λΓ � O(1), Ey is required to calculate the electrical stresses. In other words, as
for a lubrication flow, the axial electric field is calculated using the one-dimensional
formulation but the transverse component is not necessarily trivial. Fortunately,
the approximation Ex ≈ E(0)

x ≈ 〈Ex〉 permits an approximate solution for Ey also.
Substituting 〈σ 〉 = σ − (h/b)Peσ̂ in (4.13), integrating from zero to an arbitrary posi-
tion y, combining with (5.1) and (5.2), and rearranging produces an explicit expression
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for Ey , viz.

Ey = − 1

σ

{
jD +

1

Γ

∫ y

0

∂

∂x

[
σE(0)

x −
(

h

b

)3

PeΓ σ
〈σ̂ Êx〉

〈σ 〉 +

(
h

b

)2

Γ σÊx + ΛiD

]
dξ

}
.

(5.3)

Thus, the requirements (h/b)2Γ � 1 and (h/b)3PeΓ � 1 also permit a leading-order
solution E(0)

y for Ey , viz.

E(0)
y = − 1

σ

{
jD +

1

Γ

∫ y

0

∂

∂x

[
σE(0)

x + ΛiD
]
dξ

}
. (5.4)

If Λ � 1 (typical for microfluidic field strengths), this simplifies to

E(0)
y = − 1

σ

[
jD +

1

Γ

∂

∂x

(
E(0)

x

∫ y

0

σ̂ dξ

)]
(Λ � 1) . (5.5)

Comparing this equation with (5.2) provides some general insight into the character
of E in microfluidic systems. The applied axial electric field is relatively insensitive
to the development of transverse conductivity variations (see also (4.17)) and can
be calculated as a one-dimensional field using cross-sectionally averaged parameter
values. The transverse component of E, however, develops as a result of transverse
variations in σ and Ex and thus depends on σ̂ ; because Êx/Ex � σ̂ /σ , Êx is not
required to approximate Ey . Equation (5.5) is simplified further if Γ � 1 (high electro-
osmotic mobility). Then a much simpler expression for E(0)

y results, viz.

E(0)
y = −jD

σ
, Λ � 1, Γ � 1. (5.6)

Finally, if 
ωc/ωc � 1 and (h/b)λΓ � 1 then Ey is small enough to be neglected in
the species mass balances (4.21) and the Stokes equations (4.18)–(4.20), and E can be
calculated as E(0)

x (x, t) ex .

6. Approximation for u(x, t)

Simplified expressions for u are obtained in a manner similar to that used in
the preceding section to derive explicit expressions for E, using the lubrication
approximation (h/b)2 � 1. As in the case of E, more than one level of increasingly
restrictive but simplified approximations will be presented. The solutions obtained are
nearly analogous to those of other lubrication flows in thin gaps, the difference here
being the inclusion of the electrical stresses.

6.1. Approximation for u when (h/b)2Γ � 1

If (h/b)2 � 1,† then (4.19) and (4.20) are, to leading order,

∂2u(0)

∂y2
=

∂p(0)

∂x
−

(
h

b

)
λEx

[
∂Ex

∂x
+ Γ

∂Ey

∂y

]
(6.1)

† It should be noted that the problem formulation in this paper begins with the Stokes equations,
and therefore all computations of u (including the general simulation method of § 3) require that
(h/b)Re � 1. The ratio h/b softens the low-Reynolds-number restriction for high aspect ratios; this
can be shown by scaling the full Navier–Stokes equations with different axial and transverse length
scales (Leal 1992).
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and

∂p(0)

∂y
=

(
h

b

)3

λΓ Ey

[
∂Ex

∂x
+ Γ

∂Ey

∂y

]
. (6.2)

Integrating (6.2) from 0 to an arbitrary position y yields an expression for the pressure,
viz.

p(0) =

(
h

b

)3

λΓ

[∫ y

0

Ey

∂Ex

∂x
dξ + 1

2
Γ E2

y − p0

]
, (6.3)

where p0(x, t) ≡ p(0)(x, 0, t) is an unknown parameter to be evaluated later.
Substituting (6.3) into (6.1), integrating from 0 to y, and then from 1 to y yields, for
(h/b)2 � 1,

u(0) = ueo − 1

2

∂p0

∂x
(y2 − 1) +

(
h

b

)
λΓ

∫ y

1

∫ ζ

0

G(x, ξ, t) dξ dζ, (6.4)

where ueo(x, t) has been scaled as (ueo − U )/(u0|γ2 − γ1|), and

G(x, ξ, t) ≡ ∂

∂x

[
1

2

(
h

b

)2

Γ E2
y − 1

2Γ
E2

x

]
− Ex

∂Ey

∂ξ
. (6.5)

Unless the electoosmotic mobility is unusually high Γ � O(1), so if (h/b)2 � 1 then G

typically reduces to

G = −Ex

∂Ey

∂y
− 1

2Γ

∂E2
x

∂x
; (6.6)

∂p0/∂x is evaluated by recognizing that 〈u(0)〉 = 0. Solving for ∂p0/∂x by integrating
(6.4) over y from 0 to 1, setting the left-hand side equal to zero, combining with (6.4)
and (6.6), and simplifying gives (Sounart 2001)

u(0) = ueo +
3

2

[
ueo −

(
h

b

)
λΓ Ex

∫ 1

0

∫ y

1

Ey dξ dy

]
(y2 − 1)

−
(

h

b

)
λΓ Ex

∫ y

1

Ey dξ. (6.7)

Here ueo and the electric field are evaluated in terms of the ion distributions, as
described in § 5. To leading order, then, the axial velocity distribution can be calculated
directly if the ion concentration field is known.

6.2. Approximation for v and Ψ when (h/b)2Γ � 1

The transverse velocity component follows from continuity, viz.

v = −
∫ y

0

∂u

∂x
dξ. (6.8)

Substituting u(0) from (6.7) for u in (6.8) and carrying out the integration yields a
leading-order expression for v, viz.

v(0) = 1
2
(y − y3)

∂ueo

∂x
+ 1

2
(y3 − 3y)

(
h

b

)
λΓ

∂

∂x

[
Ex

∫ 1

0

∫ y

1

Ey dξ dy

]

+

(
h

b

)
λΓ

∂

∂x

[
Ex

∫ y

0

∫ y

1

Ey dξ dy

]
. (6.9)
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The stream function (scaled with u0|γ2 − γ1|h) is calculated similarly as ψ =
∫ y

0
u dξ ,

which to leading order is

ψ (0) = 1
2
(y3 − y)ueo − 1

2
(y3 − 3y)

(
h

b

)
λΓ Ex

∫ 1

0

∫ y

1

Ey dξ dy

−
(

h

b

)
λΓ Ex

∫ y

0

∫ y

1

Ey dξ dy. (6.10)

6.3. Electrical stresses negligible, i.e. (h/b)λΓ � 1

If (h/b)λΓ � 1 then the electrical stresses are negligible and u(0), v(0), and ψ (0) are
calculated, respectively, as

u(0) = ueo + 3
2
ueo(y

2 − 1), (h/b)λΓ � 1, (6.11)

v∗(0)
= 1

2
(y − y3)

∂ueo

∂x
, (h/b)λΓ � 1, (6.12)

ψ (0) = 1
2
(y3 − y)ueo, (h/b)λΓ � 1. (6.13)

7. Approximation summary
Equations (5.2), (5.4), (6.7), (6.9), and (6.10) provide explicit solutions for E, u, and

ψ in an arbitrary electrolyte-filled two-dimensional channel as long as (h/b)2Γ � 1
and (h/b)3PeΓ � 1. Γ is a ratio of mobilities that is virtually always O(1) or less,
so the essential requirement for these simplifications is that the ratio of the
characteristic transverse and axial length scales must be small; specifically, (h/b)2 � 1
and (h/b)3 � 1/Pe. Further truncation of these equations is also possible for more
restrictive cases delineated by the non-dimensional groups in the formulae. Successive
approximations for Ey are given by (5.5) and (5.6), and greatly simplified expressions,
(6.11)–(6.13), are obtained for u and ψ when the electrical stresses are negligible, i.e.
(h/b)λΓ � 1.

There are many similarities between the approximations for E and u. The critical
approximation that leads to all the simplified expressions is that each of these fields
is nearly unidirectional, which for both fields requires that (h/b)2Γ � 1. When the
electrical stresses are negligible in the Stokes equations, the axial component of u,
as well as E, is calculated as a quasi-one-dimensional field. Then, once the simple
algebraic solutions for the axial components are obtained, the transverse components
of E and u are rendered from the two-dimensional charge balance and continuity
equation, respectively. Inclusion of the electrical stresses in the momentum balance
simply results in additional, albeit more complicated, terms in the explicit expressions
for u that provide additional coupling to E.

The approximate theory has been derived generally for an arbitrary conductivity
gradient in a rectilinear channel with a thin double layer. It is therefore applicable
to any electrolyte system as long as κh � 1 and all gradients are sufficiently gradual
relative to the channel width. The model may therefore be applied to typical
IEF, ITP, FASS, high-ionic-strength electro-osmotic pumping, and other common
microfluidic separation and transport schemes. In the following section, the model
will be demonstrated and evaluated by applying it to a sample stacking and electro-
osmotic pumping configuration.
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i0, σ0, E0

Le Ls
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i0, σ0, E0
i0, σ0 /γ, γE0
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C0 C0

b0

x

y

Cs 

Figure 2. The prototype system configuration and initial conditions. The concentration field
shown applies to buffer components for γ < 1. For γ > 1, Cs is less than C0. Because of the
high aspect ratio, the diagram is not drawn to scale.

8. Application to stacking and pumping buffers
To evaluate the approximations, a prototype non-uniform buffer configuration

examined previously (Sounart & Baygents 2001) and illustrated in figure 2, was
simulated by the numerical solution presented in § 3. This numerical solution was
then compared with the results obtained using the semi-analytic expressions derived
for E and u in § 5 and § 6. In all test cases, the initial concentration fields were cross-
sectionally uniform, and sigmoidal zone boundaries were initialized with width b0. The
evaluation begins in § 8.1 with a simulation of the high-ionic-strength electro-osmotic
pumping problem discussed in Sounart & Baygents (2001) (h/b0 = 1/6), but with
γ = 1/10 rather than 1/5; γ is the field amplification factor defined by Burgi & Chien
(1991) as the ratio of the electric field in the stacking sample zone and that in the
buffer outside the sample zone (so for this configuration γ1 = γ and γ2 = 1). Because

ωc/ωc � 1 for this buffer, Ey is not calculated. The initial fluid-velocity field is first
examined in detail and shown to be accurately captured using the approximations. It is
then demonstrated that during the transport of the high-conductivity zone, significant
errors are introduced temporarily over a small part of the zone boundary, because
of a transient sharpening of the conductivity gradient in that region. The error is
short-lived and affects only a small section of the transition region. The pumping
configuration is modified in § 8.2 by reducing the initial zone-boundary length in
such a way that h/b0 = 2. It is shown that although the lubrication approximation
for u yields a poor representation of the initial velocity field, dispersion rapidly
reduces h/b0 and the approximation error quickly decays to that for h/b0 = 1/6. The
approximations are shown to predict accurately the field variables at t = 2 (i.e. two
characteristic times for convection across the sample zone).
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γ Re Pe λ Γ Λ

E0 (V cm−1) Buffer
Ex,s

E0

ρu0 | γ2 − γ1 |h
η

|γ2 − γ1|u0h

ωkkBT

εε0|γ2 − γ1|E0h

ηµ0

µ0

ωce

kBT /e

|γ2 − γ1|E0b

180 A 1/10 0.014 24 5.0 0.08 10−4

1/10 0.022 21 3.3 0.82 10−3

1/50 0.024 23 3.6 0.82 10−3

B 2 0.025 23 3.6 0.82 10−3

5 0.099 93 14.6 0.82 10−4

720 B 2 0.099 93 14.6 0.82 10−4

Table 1. Dimensionless groups for 2-D simulations. The formula for each quantity is given
under the corresponding symbol in the column headings. Ex,s is the value of Ex in the sample
zone. h/Ls = 0.02 for all simulations; ρ is the fluid density. The definitions listed for Γ and
Λ assume the usual case, 
ωc ∼ ωc; for the special case 
ωc � ωc (buffer A), the quantities
listed for the definition must be multiplied by 
ωc/ωc. For the prototype buffer configuration,
γ1 = 1 and γ2 = γ .

In § 8.3, electro-osmotic pumping is simulated with another buffer, buffer B, for
which 
ωc/ωc ∼ O(1). It is first shown that if Ey is not calculated then ion transport
is not as well captured for this buffer. The approximations for Ey from (5.4) and
(5.6) are then compared, and their inclusion in the problem formulation is shown
to improve the solutions for σ and u at γ = 1/10. The results are also compared
for γ = 1/50, and it is shown that approximation errors are insignificant and decay
after a transient growth. The more general formula (5.4) for Ey is shown to reduce
approximation errors substantially for γ = 1/10 and 1/50.

The semi-analytic expressions for u and E are evaluated for γ > 1 in § 8.4.
Approximation errors are shown to be small for γ = 2, particularly if Ey is computed
using (5.4). For γ = 5, it is shown that the electrical stresses alter the character of the
flow, but only transiently, and the simple approximations (6.11)–(6.13) that neglect
these stresses are effective after the transient. A final evaluation is then made for a
flow that is significantly affected by the electrical stresses and can be characterized
using (6.7), (6.9), and (6.10). The fidelity of these approximations is demonstrated by
increasing the electric field at γ = 2 by a factor 4.

Values of the non-dimensional groups for each set of initial buffer conditions are
provided in table 1. The zone-boundary length b changes with time, so b equals
b0 only at the outset, when all fields are cross-sectionally uniform. Recall that the
scaling arguments in the charge balance only apply for t > h2/(ωckBT ), at which time
simulation results have shown that b has spread to O(Ls). As a result, b = Ls is used
for all dimensionless parameters that depend on b, including Λ and h/b in table 1.
For all buffer configurations in this paper, Ex was calculated from (5.2).

8.1. γ < 1, buffer A (
ωc/ωc � 1) when (h/b0)
2 � 1

The approximations were first tested by simulating electro-osmotic pumping at
γ =1/10 using the buffer studied in Sounart & Baygents (2001), which will henceforth
be referred to as buffer A. The running buffer consisted of 100 mM Tris base and
200 mM cacodylic acid (pH= 6.2, σ0 = 0.452 Sm−1). The geometric lengths of the
system were Le =Ls = 1 mm, h = 20 µm, and Lc = 5 cm. A constant current was main-
tained by requiring i0 = 8 kA m−2 in the running buffer, corresponding to E0 =
180 V cm−1; b0/Ls = 0.12, so h/b0 = 1/6. For the approximate solutions, (6.11)–(6.13)
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1.0

–0.9 –0.7 –0.5 –0.3
χ

–0.1 0.1 0.3

0.5 –0.004

0.0

0.004

0.05
0.10

0.15

0.002–0.002

0

y
0.20

Figure 4. Initial streamlines in the upstream zone boundary calculated by complete numerical
solution (solid lines) and approximate solution (dashed lines). The value of ψ is given for
each contour. χ is x rescaled on b0. The simulation conditions and approximations are as in
figure 3.

were used to calculate u, v, and ψ . Tris base and cacodylic acid have approximately
the same mobility, 
ωc/ωc � 1, and so Ey was not calculated.

Initial streamlines in the moving reference frame are shown in figure 3. The
circulation patterns are similar in form to those reported by Anderson and Idol for a
harmonic zeta-potential distribution (cf. figure 2 of Anderson & Idol 1985), but here
the two-dimensional velocity field is confined to the initially sharp zone-boundary
regions, and there is no antisymmetry in x about the stagnation streamline (because
Ex is nonlinear in σ ). Since the initial electric field is identically unidirectional,
initial approximation errors result only from the lubrication approximation used to
calculate u. The streamlines obtained using the approximations are indistinguishable,
on the sample-zone length scale, from those obtained with the complete numerical
solution. Figure 4 focuses on the streamlines in the upstream zone boundary. The
approximate streamlines (dashed) deviate slightly from those calculated numerically
(solid), primarily near the stagnation streamline. The lubrication approximation is
least accurate in this region because u changes over a smaller length scale than b.
This results from the nonlinear relationship between Ex and σ , viz.

Ex ∼ i0

σ
⇒ δEx

δσ
∼ i0

σ 2
, (8.1)
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Figure 5. Initial axial-velocity profiles in the upstream zone boundary, at selected values of
χ . Solid line, complete numerical solution; dashed line, approximate solution. The simulation
conditions and approximations are as for figure 3.

which implies that b (the characteristic axial length scale for σ ) is not necessarily the
characteristic axial length scale for Ex , or consequently for u, over the entire zone
boundary. A more general axial length scale b′ for variations of Ex and u is derived
as follows. Since δEx/δx ∼ |γ − 1|E0/b

′ implies that

b′ ∼ |γ − 1|E0

(δEx/δσ )(δσ/δx)
(8.2)

and δσ/δx ∼ |γ − 1|σ0/bγ then using (8.1),

b′ ∼ γ

(
σ

σ0

)2

b. (8.3)

So, as σ ranges from σ0 to σ0/γ in the transition from running buffer to sample zone,
b′ ranges from γ b to b/γ , respectively, i.e.

b′ = b/α, α ≡
{

γ, inner region (σ ∼ σ0/γ ),

1/γ, outer region (σ ∼ σ0).
(8.4)

Thus b′ ∼ b throughout the boundary zone only for γ = O(1). For γ � 1 or γ � 1,
the scaling in § 4 applies to the region of the zone boundary where b′ ∼ b, i.e. where
σ/σ0 ∼ 1/

√
γ . Near the stagnation streamline σ ∼ σ0, so α = 1/γ and b′ = γ b = b/10.

Thus near the stagnation streamline, Ex and u change locally on an order-of-
magnitude smaller length scale than σ , so the lubrication approximation is less
accurate.

It is important to note that the ψ contours are given in increments of 0.002 where
the most significant errors are observed; increments of 0.05 are given in the region
where better agreement is obtained. Since the fluid-velocity components are given
by spatial derivitives of ψ , this shows that the relative error in the velocity field
is only significant where the fluid velocity approaches zero. Figure 5 shows initial
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Figure 6. Fluid-speed approximation error ε in the upstream zone boundary, at (a) t = 0,
(b) t = 0.4, and (c) t = 2. The solid lines represent contours of constant ε, from 0.002 to 0.01
at intervals of 0.002 (t = 0), from 0.04 to 0.28 at intervals of 0.04 (t = 0.4), and from 0.02
to 0.14 at intervals of 0.02 (t = 2). The simulation conditions and approximations are as for
figure 3.

axial-velocity profiles in the upstream zone boundary. The profiles have a parabolic
form throughout the zone boundary and are essentially equivalent to those given by
the lubrication approximation.

The zone boundaries are ultimately distorted by the fluid motion and
electrodiffusional transport, causing the conductivity, electric, fluid-velocity, and
component-concentration fields to evolve in time. Figure 6 shows the magnitude
of the error in the fluid speed ε ≡ | |u(0)| − |u| | after 0, 0.4, and 2 characteristic times
for convection across the sample zone. The approximation error increases substantially
over a small part of the zone boundary (note the plot scales and see figure 7) by
t = 0.4, but then decreases by t =2. The error develops because of the nonlinearity in
the zone boundary (discussed above) and is compounded by a transient increase in
the conductivity gradient over part of the channel cross-section. Figure 7 shows that
when t = 0.4 the conductivity gradient near the wall, in the low-conductivity region
of the zone boundary, is greater than at t = 0. By a mechanism analogous to that
of zone-boundary sharpening in isotachophoretic separations (Mosher et al. 1992),
this sharpening occurs initially where ∂u/∂x < 0 because, for this condition, the fluid
upstream moves faster than the fluid downstream, which creates a net convective
flux opposite to that driven by diffusion. Notice in figure 3 that there are six stagn-
ation points, three on each side of the low-conductivity zone. In the upstream
boundary, the fluid moves axially toward the two stagnation points at the channel
wall and transversely away from them, and vice versa for the stagnation point at
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Figure 7. Conductivity field in the upstream zone boundary calculated by complete numerical
solution, at (a) t = 0, (b) t = 0.4, and (c) t = 2. The solid lines represent contours of constant
σ − 1/(1/γ − 1) from 0.2 to 0.9 at intervals of 0.1; the dashed lines represent contours of
the same quantity from 0.01 to 0.1 at intervals of 0.01. The simulation conditions are as for
figure 3.

the centreline. Initially the y-component of the conductivity gradient vanishes, so
where the fluid moves axially toward the stagnation point the gradient is compressed,
and where it moves away the gradient is stretched, such as at the centreline in the
upstream boundary (cf. figure 7b). This creates a two-dimensional conductivity field,
and cross-sectional diffusion ultimately transfers the spreading at the centreline to the
channel wall, eliminating the local, transient, focusing of the electrolyte zone boundary
(figure 7c). The transient sharpening of the conductivity gradient decreases the local
transition length for the electric field and thus the electro-osmotic slip velocity, as
shown in figure 8. The characteristic length for velocity changes approaches h in this
region where | ∂ueo/∂x | is the greatest, and there the lubrication approximations fail.
This process affects only a short segment along the wall and has most impact where
the flow is weakest. Also, diffusion eventually reduces the conductivity and velocity
gradients (figures 7 and 8), and the error diminishes (figure 6) by t = 2. Thus the error
in the lubrication approximation is both short-lived and confined to a small portion
of the domain.

8.2. γ < 1, buffer A (
ωc/ωc � 1) when h/b0 = O(1)

Since the zone-boundary length in the previous configuration was initialized somewhat
arbitrarily, the simulation was repeated with h/b0 = 2. A zone boundary of approxi-
mately this length would result within 50 ms, given only diffusion as a dispersion mech-
anism. Initial streamlines and axial-velocity profiles near the upstream zone boundary
are shown in figures 9 and 10, respectively. Clearly the lubrication approxima-
tion does not accurately capture the initial fluid-velocity field. The lubrication
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solution and (b) the lubrication approximation. The value of ψ is given for each contour. The
ratio h/b0 = 2; all other simulation conditions and approximations are as for figure 3.

approximation yields streamlines of the form reported in figure 2 of Anderson & Idol
(1985), but the numerical solution shows streamlines of a different shape. Also, the
axial-velocity profiles are not parabolic in the zone boundary as predicted by the
lubrication approximation, and the region of two-dimensional fluid motion extends
beyond the zone boundary. However, the zone boundary rapidly spreads, so that
(h/b)2 � 1 within fractions of a second (t < 1). Figure 11 shows the maximum and
average ε (εmax and εavg) in the zone boundaries for h/b0 = 2 and h/b0 = 1/6. As
discussed previously, for h/b0 = 1/6 the error increases initially and then decays as
the zone boundaries spread. For h/b0 = 2, ε is initially as high as 0.8 but decays
immediately and ultimately follows a course nearly identical to that for h/b0 = 1/6.
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This occurs because, for t > 0.5, σ , u, and E are approximately the same for any
h/b0 � 1/6; i.e. the system is insensitive to the initial zone-boundary length, at least
for h/b0 � 1/6.

Streamlines and contours of constant conductivity and electric potential in both
zone boundaries are shown in figure 12 at t = 2. The approximate and numerical
solutions are in substantial agreement over most of the transition from running
buffer to sample zone. The transverse conductivity gradients are caused by the
electrolyte motion, and despite this, the potential contours show the electric field
is virtually unidirectional. Such results are consistent with the scaling arguments
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Solid lines, complete numerical solution; dashed lines, approximate solution. The unlabelled
streamlines in the top panel are shown for ψ from 0.06 to 0.15 at intervals of 0.03; values of ψ
are given for all other streamlines. Conductivity contours are shown for σ − 1/(1/γ − 1) from
0.1 to 0.9 at intervals of 0.1; potential contours are shown for [φ − φ(x = 0)]/(E0|γ − 1|Ls)
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(cf. (4.8) and (4.16)), which suggest that transverse variations in σ and Ex should be
O[(h/b)Pe] ∼ O(10−1), and O[(h/b)2Γ ] ∼ O(10−5), respectively.

8.3. γ < 1, buffer B (
ωc/ωc ∼ 1)

Electro-osmotic pumping at γ =1/10 was simulated with another buffer, buffer B, to
demonstrate that the approximations are not limited to a parameter space with

ωc/ωc � 1. The running buffer consisted of 20 mM ACES and 9 mM NaOH
(pH= 6.2, σ0 = 0.0723 Sm−1) (Thormann et al. 1998). All other simulation conditions
were equivalent to those in § 8.1. If Ey is not calculated, the ion transport is not
predicted as accurately as for buffer A, as can be seen in the conductivity contours
shown in figure 13(a). Ey is more important for buffer B because 
ωc/ωc ∼ 1 (cf.
(4.21)). This is clear from figure 13(b), which shows that the approximate conductivity
contours match the complete numerical solution at least as well as for buffer A when
the mobility of ACES is artificially changed to equal that of NaOH.

The approximation can be improved significantly for buffer B by calculating
Ey using (5.4) or (5.5) or even the simple expression in (5.6). Figure 14 shows
approximate Ey contours calculated from (5.4) and (5.6) for comparison with those
computed from the complete numerical solution. Although Γ ∼ 1, (5.6) provides a
reasonable approximation to Ey in the inner region of the zone boundary but fails
in the outer region, where the integral in (5.4) becomes important. The slightly more
complicated expression in (5.4) greatly improves the estimate of Ey throughout both
zone boundaries and has an insignificant effect on the simulation time.

To understand why (5.6) produces a good approximation for Ey in the inner region,
the deviations from the scaling in § 4 must be considered. Since Ex changes by O(1)
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approximate solution was calculated from (5.2), (6.11), (6.12), (6.13), and Ey = 0.
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over the length scale b/α (cf. (8.4)), (5.5) can be written more generally if x is rescaled
with b/α, whence it reads

E(0)
y = − 1

σ

[
jD +

α

Γ

∂

∂x

(
E(0)

x

∫ y

0

σ̂ dξ

)]
. (8.5)

Thus the integral in (8.5) is approximately an order of magnitude less than jD in the
inner region (α = γ = 1/10), which extends from σ = σ0/γ to σ0/

√
γ , and does not

significantly affect the calculation of Ey over approximately two-thirds of the zone
boundary. In the outer region, where α = 1/γ =10, the integral is important and the
calculation of Ey from (5.6) is a poor approximation.

Figures 15 and 16 show the conductivity contours and streamlines, respectively,
at t =2, calculated using all three approximations for Ey . Equations (5.4) and (5.6)
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substantially improve the approximations. Equation (5.4) only slightly improves the
approximation of the streamlines in the outer region over the approximation provided
by (5.6), because much of the residual error in this region results from use of the
lubrication approximation for the fluid motion.

Similar results are obtained for γ = 1/50, as shown in figures 17 and 18. The more
accurate approximation of Ey in the outer region provided by (5.4) has a more
important effect on the streamlines at γ = 1/50 because α is a factor 5 larger. The
accuracy of the approximations for the electro-osmotic pumping configuration with
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simulation conditions and approximations are as for figure 13.

buffer B is summarized by figure 19, which presents εmax and εavg as a function of
time. As for buffer A, the errors peak before t = 0.5 and then decay. Equation (5.4)
reduces εmax and εavg by as much as two-thirds from the values resulting from (5.6).
By t = 2, εavg < 0.003 for all cases.

8.4. γ > 1, Buffer B

Sample stacking was simulated first for γ = 2 with buffer B. All other simulation
conditions were as described in § 8.1. Figure 20 shows εmax and εavg versus t .
Since γ = O(1) (α = O(1)), the integral in (8.5) is important and (5.6) yields a poor
approximation for Ey throughout the zone boundaries. The calculation of Ey from
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Figure 21. Time evolution of streamlines for buffer B, γ = 5, calculated by complete numerical
solution. (a) t = 0, (b) t = 0.1, (c) t = 1.0. All other simulation conditions are as for figure 13.
Unlabelled streamlines are shown for ψ from −0.16 to −0.08 at intervals of 0.04.

(5.4) rather than (5.6) reduces εmax and εavg by approximately an order of magnitude,
and εmax never exceeds 0.03.

The maximum error peaks at a lower value than for γ = 1/10 and γ =1/50 because
Ex and u change over the length scale b throughout the zone boundary for γ =2,
since γ = O(1); for γ � 1, however, the zone boundary is highly nonlinear and most
of the electric-field and fluid-velocity changes occur over a narrow region near the
uniform buffer.

At γ = 5, the electrical stresses begin to affect the fluid motion, but only slightly and
ephemerally. As shown in figure 21, a small secondary circulation pattern develops in
the downstream zone boundary, and the streamlines are slightly distorted at t = 0.1.
As the zone boundary spreads, however, the electrical stresses quickly diminish and
do not have a lasting effect. By t =1, the structure of the flow begins to resemble that
obtained for γ < 5. The electrical stresses do not significantly impact the fluid motion
and ion transport after the initial transient, and so (5.4) and (6.11)–(6.13) still provide
good approximations at t =2 (figure 22).

The electrical stresses also have a significant effect on the flow for γ = O(1) at
higher values of E0. Figure 23 shows streamlines for γ = 2 and E0 = 720 V cm−1. The
electrical stresses have more influence on the flow at this condition than at γ = 5
and E0 = 180 V cm−1, and the effects last longer. Calculating these streamlines with
a semi-analytic solution requires inclusion of the electrical stresses in the lubrication
approximation for u. Unfortunately, using (5.4) to approximate Ey in the electrical
stresses in (6.7)–(6.10) results in a numerical instability in the computation. However,
if E is calculated numerically the semi-analytic expressions (6.7), (6.9), and (6.10)
yield good approximations for u, v, and ψ (figure 23).
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Figure 22. (a) Streamlines, (b) conductivity contours and (c) Ey contours for buffer B, γ = 5
at t = 2. Solid lines, complete numerical solution; dashed lines, approximate solution. Ey was
calculated from (5.4); all other simulation conditions and approximations are as for figure 13.
Unlabelled streamlines in top panel are shown for ψ from −0.16 to −0.02 at intervals of 0.02;
conductivity contours are shown for σ − 1/(1/γ − 1) from 0.25 to 0.95 at intervals of 0.05.

1.0

–0.18

–0.18 –0.16

–0.20

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.5

0.7 0.8 0.9 1.0 1.1 1.2

(a)

(b)

0.7 0.8 0.9 1.0 1.1 1.2

0

x

y

1.0

0.5

0

y

Figure 23. Streamlines for buffer B, γ = 2, E0 = 720 V cm−1 at (a) t = 0.1 and (b) t = 1.
Solid lines, complete numerical solution; dashed lines, the approximate solution from (6.7),
(6.9), and (6.10) used for u and ψ . Unlabelled streamlines are shown for ψ from −0.02 to
−0.16 at intervals of 0.02. i0 = 5.2 kAm−2, u0

eo = 4.8 mm s−1. All other simulation conditions
are as for figure 13.

9. Concluding remarks
We have shown that for conditions typical of many microfluidic processes in non-

uniform electrolytes, u and E can be calculated explicitly at any given time if the
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ion distributions are known. The semi-analytic expressions for u and E increase
the computation speed by a factor 4–5, and comparisons with complete numerical
solutions of a prototype problem show remarkable agreement for various electrolyte
conditions. Scaling arguments indicate that the approximate solutions are reasonable
for a fairly liberal parameter space delineated by(

h

b

)2

� 1,

(
h

b

)3

Pe � 1,

(
h

b

)
Re � 1.

Numerical stability problems imply, however, that the approximation for Ey might
not be sufficiently accurate to calculate the nonlinear electrical stresses when they
begin to change the character of the flow, (h/b)λ� O(1). Even with this limitation,
the semi-analytic expression for E is useful for local field strengths at least up to
1 kV cm−1. No such restriction is imposed on the lubrication approximation for u,
which includes an explicit term for the electrical stresses and thus can be used for
(h/b)λ� O(1).

In microanalysis processes, solute distributions inherently evolve in time, so con-
ductivity transition lengths b are generally not constant. The potential therefore
exists for the approximations, although initially accurate, to fail during a transient
sharpening of a zone boundary. Conversely, the approximations may fail initially
but accurately represent the remainder of the system behaviour after spreading of
the zone boundaries, as in § 8.2. Fortunately, the two-dimensional electrically driven
fluid motion that creates the need to evaluate u and E in multiple dimensions also

disperses the electrolyte zones. This is usually enough to maintain
(

h
b

)2 � 1, except
during brief transients that have little effect on the solutions.

The analysis has also provided general information on the physical behaviour
of electrokinetic processes in capillaries. Applied electric fields in rectilinear micro-
channels are essentially unidirectional, even when the transverse component of ∇σ

exceeds the axial component. Ey , however, although orders of magnitude smaller
than Ex , has an important effect on solutal transport when electrolyte ion mobilities
are not approximately identical. Through the coupling of the ion balances to the
electro-osmotic velocity, this also affects the fluid motion. Ey impacts the flow even
more dramatically when (h/b)λ� O(1), and the electrical stresses generate additional
circulation patterns in conductivity-transition regions. When the electrical stresses are
not significant and (h/b)2, (h/b)3Pe, and (h/b)Re � 1, the axial fluid-velocity profile
has a simple parabolic form.

The authors would like to acknowledge Petter E. Bjorstad at The University of
Bergen Institute for Informatics, P.M. de Zeeuw at The Center for Mathematics
and Computer Science (CWI), and SIAM for the freely distributed FORTRAN
subroutines used to solve the PDEs for the stream function and the electric potential
in the general two-dimensional numerical solution.

Note added in proof

Note that, regarding the equations following (4.13), 〈σ ∗〉 and E∗
x are O(1) unless

|γ2 − γ1| � 1, but if 〈σ 〉 and Ex are scaled more generally as 〈σ ∗∗〉 ≡ (〈σ 〉 −
σ0/γ1)/(1/γ2 − 1/γ1)σ0 and E∗∗

x ≡ (Ex − γ1E0)/(γ2 − γ1)E0, then they are O(1) for any
γ1 and γ2. However, it is clear by inspection with the substitutions 〈σ ∗〉 = 〈σ ∗∗〉 + β1

and E∗
x = E∗∗

x + β2 (and similarly for C∗
k and u∗), where β1,2 ≡ |γ1,2/γ2,1 − 1|−1, that
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this does not affect the approximations developed in the next section. The simpler
scaling is used here because the inclusion of the β1,2 terms simply reveals further
simplification for the trivial case of |γ2 − γ1| � 1, but makes the equations more
cumbersome and is a distraction from the general approximation development for
any γ1 and γ2.
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